PROPHET StatGuide: One-way blocked analysis of variance (ANOVA)

One-way blocked analysis of variance (ANOVA) is used to test the null hypothesis that multiple population means are all equal, allowing for block effects.


These assumptions imply that the variation within each block and the variation within each each sample (treatment) will be the same, since the variance is assumed to be the same for all the measurements.

A one-way blocked analysis of variance (ANOVA) tests whether any of the population means differ from each other. A multiple comparisons test may be used to answer the question of which population means differ from which other means, a question the ANOVA itself will not answer.

The purpose of the blocking factor is to account for a nuisance factor and/or to reduce the error term used in performing the test for the significance of the treatment effect. For this reason, the significance of the block effect itself is not tested, nor are multiple comparisons done between fixed blocks. Otherwise, a one-way blocked ANOVA is analyzed as a a two-way ANOVA with no interactions and no replications. If there are only two treatments, the overall F test is equivalent to a paired t test.

A one-way blocked ANOVA with random blocks is analyzed the same way as a repeated measures design with one repeated measures (one within) factor. The subjects are the blocks, and each subject either receives each treatment over time, or the same treatment evaluated at different times.

If the main goal of the analysis is simply to test the significance of the treatment effect, then the assumption of no interaction between blocks and treatments can be relaxed for a one-way blocked ANOVA with random blocks. The overall F test is the same as for the no-interaction case. The correlation between two observations from the same block will still be constant, but will not be the same as in the no-interaction case.


To properly analyze and interpret results of one-way blocked analysis of variance, you should be familiar with the following terms and concepts:

If you are not familiar with these terms and concepts, you are advised to consult with a statistician. Failure to understand and properly apply one-way blocked analysis of variance (ANOVA) may result in drawing erroneous conclusions from your data. Additionally, you may want to consult the following references:

Examine the glossary.

Do a keyword search of PROPHET StatGuide.

Back to StatGuide testing equality of means/location page.

Back to StatGuide analysis of variance (ANOVA) page.

Back to StatGuide home page.

Last modified: March 11, 1997

©1996 BBN Corporation All rights reserved.